
Mkstemp 1
ID: 781-BSI | Version: 3 | Date: 5/16/08 2:39:27 PM

Mkstemp
Don't be complacent. Several vulnerabilities possible.

Sean Barnum, Cigital, Inc. [vita1]

Copyright © 2007 Cigital, Inc.

2007-04-02

Part "Original Cigital Coding Rule in XML"
Mime-type: text/xml, size: 5650 bytes

Attack Category • Malicious Input

• Privilege Exploitation

• File Manipulation

Vulnerability Category • Temporary file creation problem

• Privilege escalation problem

Software Context • File Creation

Location • stdlib.h

Description Use of mkstemp() to create a temporary file should
not lead to complacency, as it is still possible for
vulnerabilities to be present.

The mkstemp() function generates a unique
temporary file name from the supplied template,
opens a file of that name using the O_EXCL flag
(guaranteeing the current process to be the only user)
and returns a file descriptor.

The POSIX specification does not say anything
about file modes, so the application should make
sure its umask is set appropriately before calling
mkstemp.

mkstemp() is designed to facilitate the creation
of a temporary file in a way that is more secure
than the use of mktemp() followed by open().
Use of mkstemp() does avoid the class of race
conditions that involves a third party guessing the
temporary file name and creating that file between
the mktemp() and open() calls. However, use of
mkstemp() does not eliminate all vulnerabilities.
While use of the returned file descriptor is safe,
manipulation of the temporary file by name can
introduce other vulnerabilties.

APIs Function Name Comments

mkstemp

Method of Attack A common practice of installing 'tmpwatch'
utility or similar software configured to sweep

1. http://buildsecurityin.us-cert.gov/bsi-rules/35-BSI.html (Barnum, Sean)

http://buildsecurityin.us-cert.gov/bsi-rules/35-BSI.html

Mkstemp 2
ID: 781-BSI | Version: 3 | Date: 5/16/08 2:39:27 PM

the /tmp directory on Linux and UNIX systems
can compromise secure temporary file creation
mechanisms in certain applications, creating a
potential privilege escalation scenario.

By taking advantage of the operation of the cleanup
utility, and exploiting either an "unlink" race
condition or a deletion that occurs because a process
that created a temporary file is suspended for an
extended period of time, an attacker can potentially
substitute an imposter file for the original temporary
file. This can result in a privilege escalation scenario.

Exception Criteria The mkstemp() function is safe if only the descriptor
is used and the returned filename is not used in a
subsequent function call with extra privileges.

Solutions Solution
Applicability

Solution
Description

Solution
Efficacy

mkstemp()
is used by
privileged
programs in a
system with a
temporary file
cleanup utility.

If possible,
avoid using the
name of the
temporary file
to perform any
sensitive file
operations.

Using a file
cleanup utility
with more
secure logic
may somewhat
reduce
vulnerability.
But it is not
clear that there
is a design that
eliminates all
risk.

Privileged
applications
should use
private
temporary
directories for
sensitive files,
if possible.
(Doing this in
a mandatory
fashion may,
however, create
portability
issues.)

Efficacy
depends on
particular
solution.

Signature Details int mkstemp(char *template);

Mkstemp 3
ID: 781-BSI | Version: 3 | Date: 5/16/08 2:39:27 PM

Examples of Incorrect Code int fd = mkstemp("FooTemplate");
// write to fd
const char *fileName =
useFstatToGetFileNameFromDescriptor(fd);

[...]

// attacker could potentially
substitute a different file to be
opened in the next line
int fd2 = open(fileName, O_EXCL);
// rely on data read from fd2

Examples of Corrected Code // set umask appropriately
int fd = mkstemp("FooTemplate");
// write to fd
// rely on data read from fd

Source References • http://www.bindview.com/Services/Razor/
Papers/2002/mkstemp.cfm

• ITS4 Source Code Vulnerability Scanning Tool
3

Recommended Resources • Man page for functions to create a temporary

file4

• Man page for mkstemp5

Discriminant Set Operating System • UNIX (All)

Languages • C

• C++

Cigital, Inc. Copyright
Copyright © Cigital, Inc. 2005-2007. Cigital retains copyrights to this material.

Permission to reproduce this document and to prepare derivative works from this document for internal use
is granted, provided the copyright and “No Warranty” statements are included with all reproductions and
derivative works.

For information regarding external or commercial use of copyrighted materials owned by Cigital, including

information about “Fair Use,” contact Cigital at copyright@cigital.com1.

The Build Security In (BSI) portal is sponsored by the U.S. Department of Homeland Security (DHS),
National Cyber Security Division. The Software Engineering Institute (SEI) develops and operates BSI. DHS
funding supports the publishing of all site content.

1. mailto:copyright@cigital.com

http://www.bindview.com/Services/Razor/Papers/2002/mkstemp.cfm
http://www.bindview.com/Services/Razor/Papers/2002/mkstemp.cfm
http://www.cigital.com/its4/
http://www.mkssoftware.com/docs/man3/mkstemp.3.asp
http://www.mkssoftware.com/docs/man3/mkstemp.3.asp
http://unixhelp.ed.ac.uk/CGI/man-cgi?mkstemp+3
mailto:copyright@cigital.com

